

Faculty of Sciences Department of Mathematics

Mathematics Placement Test for:

Faculty of Business Administration, Faculty of Mass Communication & Fine Arts, and Faculty of Religion & Humanities.

Instructions

The Mathematics Placement Test is required for all applicants applying for Faculty of Business Administration, Faculty of Mass Communication & Fine Arts, and Faculty of Religion & Humanities. The test consists of 30 MCQ exercises that must be solved within 60 minutes. The passing grade is 15/30. The exercises target the following topics:

1. Basic Algebra

- Sets of Numbers and Notation of Intervals.
- Notation of Absolute Value.
- Algebraic expressions: Addition, subtraction, multiplication and simplification.

2. Solving Linear Equations and inequalities

- Solving Linear Equations.
- Solving Linear Inequalities.
- Solving Equations and Inequalities with absolute Values.

3. Graphing of Straight lines and Functions

- Plotting Points on orthonormal System.
- Finding equation of a straight line, starting from two points or having the slope with one point.
- Parallel and Perpendicular straight lines.
- Graphing an equation of two variables using some point and deducing if this graph corresponds to a function or no.

4. Solving a system of linear equations with two variables

- Graphically.
- Substitution Method.
- Elimination Method.

5. Polynomials and polynomial functions

- Addition, Subtraction and Multiplication.
- Factorization.
- Remarkable Identities.
- Solving polynomial equations.

6. Rational functions and expressions

- Domain of Definition.
- Addition, subtraction, multiplication and division.
- Solving Rational Equations.
- Long division of polynomials.

7. Irrational Functions and Expressions

- Notation of Radical.
- Domain of definition.
- Solving Radical equations.
- Rationalizing the denominator.

8. Quadratic Equations

- The discriminant and the solution.
- Sign of a quadratic equation.
- Completing square.

Remark: All types of calculators are not allowed.

Sample Placement Test

Exercise 1:

The number $1+\sqrt{2}$ belongs to

- 1. Q.
- 2. Z.
- 3. N.
- **4.** ℝ. **√**
- 5. None of the above.

Exercise 2:

 $|-2+3| \times 2 - |-4+1| \times 3 + |5| - |-6|$ is equal to

- 1. −8.**√**
- 2. 22.
- 3. 10.
- **4.** −10.
- 5. None of the above.

Exercise 3:

 $16 - [4 - (-2)] + 18 \div 2 + 3$ is equal to

- 1. 13.
- 2. 22. **√**

- 3. 17.
- 4. 26.
- 5. None of the above.

Exercise 4:

The expression $\left(\frac{8x^2y^{-2}}{3x^8y^7}\right)^3$ is equal to

- 1. $\left(\frac{8}{3}\right)^3 x^{18} y^{-27}$.
- **2.** $\left(\frac{8}{3}\right)^3 x^{-18} y^{-27}$. \checkmark
- 3. $\left(\frac{8}{3}\right)^3 x^{-18} y^{27}$.
- 4. $\left(\frac{8}{3}\right)^3 x^{18} y^{27}$.
- 5. None of the above.

Exercise 5:

The expression $(9x^4y^2)(-4x^{-2}y^2)$ is equal

- 1. $-36x^2y^{-4}$.
- 2. $-36x^{-8}y^4$.
- 3. $-36x^2y^4$.
- 4. $-36x^{-2}y^{-4}$.
- 5. None of the above.

Exercise 6:

The solution set *S* of the linear equation 2x + 1 = 5 is given by

- 1. $S = \{-3\}$.
- 2. $S = \{-2\}$.
- 3. $S = \{2\}$.
- 4. $S = \{3\}$.
- 5. None of the above.

Exercise 7:

The solution set S of the linear equation $\frac{2x-1}{3} + \frac{1}{4} = \frac{1-x}{3}$ is given by

- 1. $S = \{\frac{5}{4}\}$.
- 2. $S = \{\frac{4}{5}\}.$
- 3. $S = \{\frac{12}{5}\}$.
- 4. $S = \{\frac{5}{12}\}$.
- 5. None of the above.

Exercise 8:

The solution set S of the inequality 2(3x+5)-3 < 5(x+1)+11(x+2) is given by

- 1. $S =]-2, +\infty[. \checkmark]$
- 2. $S =]-\infty, 2[$.

- 3. $S =]2, +\infty[$.
- 4. $S =]-\infty, -2[$.
- 5. None of the above.

Exercise 9:

The solution set *S* of the inequality $3|2x+1|+16 \le 25$ is given by

- 1. S =]-2,1[.
- 2. S = [-2, 1].
- 3. S = [-2, 1].
- 4. S =]-2,1].
- 5. None of the above.

Exercise 10:

The solution set *S* of the inequality 3|-4x+10|>6 is given by

- 1. $S =]-\infty, 3[$.
- **2.** $S =]2, \infty[$.
- 3. $S =]-\infty, 2[\bigcup]2, 3[\bigcup]3, +\infty[.$
- 4. $S =]-\infty, 2[\bigcup]3, +\infty[. \checkmark]$
- 5. None of the above.

Exercise 11:

The solution set *S* of the equation |2x+1|=7 is given by

- 1. $S = \{-4,3\}$.
- 2. $S = \{-4\}$.
- 3. $S = \{3\}$.
- 4. The equation has no solution.
- 5. None of the above.

Exercise 12:

The solution set *S* of the equation |3x+6|=|2-x| is given by

- 1. $S = \{-4\}$.
- 2. $S = \{-4, -1\}$.
- 3. $S = \{-1\}$.
- 4. The equation has no solution.
- 5. None of the above.

Exercise 13:

The slope of the line passing through the points A(2,-3) and B(4,-2) is equal to

- 1. $-\frac{5}{6}$.
- 2. $\frac{5}{6}$.

- 3. $\frac{5}{2}$.
- 4. $\frac{1}{2}$.
- 5. None of the above.

Exercise 14:

Let $m \in \mathbb{R}$. We consider the line (l_1) given by y = (m+2)x - 3 and the line (l_2) given by y = 3x + 4. Then, the lines (l_1) and (l_2) are parallel if

- 1. m = 2.
- 2. m = -5.
- 3. m = 1.
- 4. *m* does not exist.
- 5. None of the above.

Exercise 15:

Let $m \in \mathbb{R}$. We consider the line (l_1) given by y = (2m-5)x+6 and the line (l_2) given by y = 2x-4. Then, the lines (l_1) and (l_2) are perpendicular if

- 1. $m = \frac{9}{4}$.
- 2. $m = -\frac{9}{4}$.
- 3. $m = \frac{9}{2}$.
- 4. $m = -\frac{9}{2}$.
- 5. None of the above.

Exercise 16:

Let $a \in \mathbb{R}$ and let f be the function given by $f(x) = x^2 - 1$. The point A(1,a) belongs to the curve of the function f if

- 1. $a = \sqrt{2}$.
- 2. $a = -\sqrt{2}$.
- 3. *a* does not exist.
- 4. a = 0.
- 5. None of the above.

Exercise 17:

The system

$$\begin{cases} 2x + y &=& 7, \\ x - 2y &=& 6 \end{cases}$$

has

- 1. One solution. √
- 2. The system has no solution.
- 3. Two solutions.
- 4. Infinite number of solutions.
- 5. None of the above.

Exercise 18:

If $p(x) = 2x^3 + 3x + 4$, $q(x) = 3x^2 - 2x + 1$, and $r(x) = 2x^2 - x + 1$, then $2p(x) - q(x) \times r(x)$ is equal to

1.
$$-6x^4 + 11x^3 - 7x^2 + 9x + 5$$
.

2.
$$-6x^4 + 11x^3 - 7x^2 + 10x + 7$$
.

3.
$$-6x^4 + 11x^3 - 6x^2 + 9x + 7$$
.

4.
$$-6x^4 + 11x^3 - 7x^2 + 9x + 7$$
.

Exercise 19:

By factoring $x^3 + 3x^2 - 4x - 12$ we get

1.
$$x^3 + 3x^2 - 4x - 12 = (x+3)(x+2)^2$$
.

2.
$$x^3 + 3x^2 - 4x - 12 = (x+3)(x+2)(x-2)$$
.

3.
$$x^3 + 3x^2 - 4x - 12 = (x+3)(x-2)^2$$
.

4.
$$x^3 + 3x^2 - 4x - 12 = (x-3)(x+2)(x-2)$$
.

5. None of the above.

Exercise 20:

The solution set S of the equation $x^3 + 3x^2 - 4x - 12 = 0$ is given by

1.
$$S = \{-3, -2\}$$
.

2.
$$S = \{-3, -2, 2\}.$$

3.
$$S = \{-3, 2\}$$
.

4. The equation has no solution.

Exercise 21:

The domain of definition of the function $f(x) = \frac{1}{x-2}$ is given by

- 1. $D =]-\infty, +\infty[$.
- **2.** $D =]-\infty, 2[\cup]2, +\infty[$.
- 3. $D =]-\infty, -2[\cup]-2, +\infty[$.
- 4. $D =]2, +\infty[$.
- 5. None of the above.

Exercise 22:

If $p(x) = \frac{2x+1}{x+1}$ and $q(x) = \frac{x-5}{3x+7}$, then $p(x) \times q(x)$ is equal to

- 1. None of the below.
- **2.** $p(x) \times q(x) = \frac{-2x^2 + 9x 5}{3x^2 + 10x 7}$.
- 3. $p(x) \times q(x) = \frac{2x^2 9x + 5}{3x^2 + 10x + 7}$.
- **4.** $p(x) \times q(x) = p(x) \times q(x) = \frac{2x^2 + 9x + 5}{3x^2 + 10x + 7}$.
- 5. $p(x) \times q(x) = \frac{2x^2 9x 5}{3x^2 + 10x + 7}$.

Exercise 23:

The set of solution S of the equation

$$\frac{2}{x+2} + \frac{4}{x-2} = \frac{x-1}{x^2-4}$$

is given by

1.
$$S = \{-1\}$$
.

- 2. $S = \{2\}$.
- 3. $S = \{-2\}$.
- 4. $S = \{-2, -1, 2\}$.
- 5. None of the above.

Exercise 24:

Using the Long or Euclidean division, $x^2 - 9 \div x - 2$ is equal to

1.
$$x+2-\frac{5}{x-2}$$
.

2.
$$x-2+\frac{5}{x-2}$$
.

3.
$$-x-2-\frac{5}{x-2}$$
.

4.
$$x+2+\frac{5}{x-2}$$
.

5. None of the above.

Exercise 25:

The domain of definition *D* of the function $f(x) = \sqrt{2x+7} + x$ is given by

1.
$$D = [-\frac{7}{2}, +\infty[$$
.

2.
$$D = \mathbb{R}$$
.

3.
$$D =]-\frac{7}{2}, +\infty[$$
.

4.
$$D = \mathbb{R} - \{-\frac{7}{2}\}.$$

Exercise 26:

By simplifying, $4\sqrt[3]{3} - \sqrt{5} + 2\sqrt[3]{3} + 4\sqrt{5}$ is equal to

- 1. $6\sqrt[3]{3} + 3\sqrt{5}$. \checkmark
- 2. $6\sqrt[3]{3} 3\sqrt{5}$.
- 3. $-6\sqrt[3]{3} 3\sqrt{5}$.
- 4. $-6\sqrt[3]{3} + 3\sqrt{5}$.
- 5. None of the above.

Exercise 27:

The set of solution *S* of the equation $\sqrt{2x+7} = x+2$ is given by

- 1. $S = \{1\}$.
- 2. $S = \{-3\}$.
- 3. $S = \{-3, 1\}$.
- 4. The equation has no solution.
- 5. None of the above.

Exercise 28:

By rationalizing the function $f(x) = \frac{x+1}{\sqrt{x}-2}$ we obtain

1. $f(x) = \frac{(x+1)(\sqrt{x}+2)}{x-4}$.

2.
$$f(x) = \frac{(x+1)(\sqrt{x}+2)}{x+4}$$
.

3.
$$f(x) = \frac{(x-1)(\sqrt{x}+2)}{x-4}$$
.

4.
$$f(x) = -\frac{(x+1)(\sqrt{x}+2)}{x-4}$$
.

Exercise 29:

The set of the real roots S of the polynomial $2x^2 + 5x - 3$ is given by

1.
$$S = \{-3, \frac{1}{2}\}$$
.

2.
$$S = \{\frac{1}{2}\}.$$

3.
$$S = \{-3\}$$
.

- 4. The polynomial doesn't have real solutions.
- 5. None of the above.

Exercise 30:

Using the table of sign, the function f(x) = x(x-1) is strictly negative if

1.
$$x \in]0,1[$$
.

2.
$$x \in]1, +\infty[$$
.

3.
$$x \in]-\infty,1[$$
.

- 4. It is always positive on \mathbb{R} .
- 5. None of the above.