

Faculty of Sciences

Department of Mathematics

Mathematics Placement Test for:

Faculty of Business Administration, Faculty of Mass Communication \& Fine Arts, and Faculty of Religion \& Humanities.

Instructions

The Mathematics Placement Test is required for all applicants applying for Faculty of Business Administration, Faculty of Mass Communication \& Fine Arts, and Faculty of Religion \& Humanities. The test consists of 30 MCQ exercises that must be solved within 60 minutes. The passing grade is $15 / 30$. The exercises target the following topics:

1. Basic Algebra

- Sets of Numbers and Notation of Intervals.
- Notation of Absolute Value.
- Algebraic expressions: Addition, subtraction, multiplication and simplification.

2. Solving Linear Equations and inequalities

- Solving Linear Equations.
- Solving Linear Inequalities.
- Solving Equations and Inequalities with absolute Values.

3. Graphing of Straight lines and Functions

- Plotting Points on orthonormal System.
- Finding equation of a straight line, starting from two points or having the slope with one point.
- Parallel and Perpendicular straight lines.
- Graphing an equation of two variables using some point and deducing if this graph corresponds to a function or no.

4. Solving a system of linear equations with two variables

- Graphically.
- Substitution Method.
- Elimination Method.

5. Polynomials and polynomial functions

- Addition, Subtraction and Multiplication.
- Factorization.
- Remarkable Identities.
- Solving polynomial equations.

6. Rational functions and expressions

- Domain of Definition.
- Addition, subtraction, multiplication and division.
- Solving Rational Equations.
- Long division of polynomials.

7. Irrational Functions and Expressions

- Notation of Radical.
- Domain of definition.
- Solving Radical equations.
- Rationalizing the denominator.

8. Guadratic Equations

- The discriminant and the solution.
- Sign of a quadratic equation.
- Completing square.

Remark: All types of calculators are not allowed.

Sample Placement Test

Exercise 1:

The number $1+\sqrt{2}$ belongs to

1. \mathbb{Q}.
2. \mathbb{Z}.
3. \mathbb{N}.
4. $\mathbb{R} \cdot \sqrt{ }$
5. None of the above.

Exercise 2:

$|-2+3| \times 2-|-4+1| \times 3+|5|-|-6|$ is equal to

1. $-8 . \sqrt{ }$
2. 22 .
3. 10 .
4. -10 .
5. None of the above.

Exercise 3:

$16-[4-(-2)]+18 \div 2+3$ is equal to

1. 13.
1. 22 .
2. 17.
1. 26.
1. None of the above.

Exercise 4:

The expression $\left(\frac{8 x^{2} y^{-2}}{3 x^{8} y^{7}}\right)^{3}$ is equal to

1. $\left(\frac{8}{3}\right)^{3} x^{18} y^{-27}$.
2. $\left(\frac{8}{3}\right)^{3} x^{-18} y^{-27} \cdot \sqrt{ }$
3. $\left(\frac{8}{3}\right)^{3} x^{-18} y^{27}$.
4. $\left(\frac{8}{3}\right)^{3} x^{18} y^{27}$.
5. None of the above.

Exercise 5:

The expression $\left(9 x^{4} y^{2}\right)\left(-4 x^{-2} y^{2}\right)$ is equal

1. $-36 x^{2} y^{-4}$.
2. $-36 x^{-8} y^{4}$.
3. $-36 x^{2} y^{4} \cdot \sqrt{ }$
4. $-36 x^{-2} y^{-4}$.
5. None of the above.

Exercise 6:

The solution set S of the linear equation $2 x+1=5$ is given by

1. $S=\{-3\}$.
2. $S=\{-2\}$.
3. $S=\{2\}$.
4. $S=\{3\}$.
5. None of the above.

Exercise 7:

The solution set S of the linear equation $\frac{2 x-1}{3}+\frac{1}{4}=\frac{1-x}{3}$ is given by

1. $S=\left\{\frac{5}{4}\right\}$.
2. $S=\left\{\frac{4}{5}\right\}$.
3. $S=\left\{\frac{12}{5}\right\}$.
4. $S=\left\{\frac{5}{12}\right\}$.
5. None of the above.

Exercise 8:

The solution set S of the inequality $2(3 x+5)-3<5(x+1)+11(x+2)$ is given by

1. $S=]-2,+\infty[. \sqrt{ }$
2. $S=]-\infty, 2[$.
3. $S=] 2,+\infty[$.
4. $S=]-\infty,-2[$.
5. None of the above.

Exercise 9:

The solution set S of the inequality $3|2 x+1|+16 \leq 25$ is given by

1. $S=]-2,1[$.
2. $S=[-2,1[$.
3. $S=[-2,1] . \sqrt{ }$
4. $S=]-2,1]$.
5. None of the above.

Exercise 10:

The solution set S of the inequality $3|-4 x+10|>6$ is given by

1. $S=]-\infty, 3[$.
2. $S=] 2, \infty[$.
3. $S=]-\infty, 2[\cup] 2,3[\cup] 3,+\infty[$.
4. $S=]-\infty, 2[U] 3,+\infty[. \sqrt{ }$
5. None of the above.

Exercise 11:

The solution set S of the equation $|2 x+1|=7$ is given by

1. $S=\{-4,3\}$.
2. $S=\{-4\}$.
3. $S=\{3\}$.
4. The equation has no solution.
5. None of the above.

Exercise 12:

The solution set S of the equation $|3 x+6|=|2-x|$ is given by

1. $S=\{-4\}$.
2. $S=\{-4,-1\} \cdot \sqrt{ }$
3. $S=\{-1\}$.
4. The equation has no solution.
5. None of the above.

Exercise 13:

The slope of the line passing through the points $A(2,-3)$ and $B(4,-2)$ is equal to

1. $-\frac{5}{6}$.
2. $\frac{5}{6}$.
3. $\frac{5}{2}$.
4. $\frac{1}{2} \cdot \sqrt{ }$
5. None of the above.

Exercise 14:

Let $m \in \mathbb{R}$. We consider the line $\left(l_{1}\right)$ given by $y=(m+2) x-3$ and the line $\left(l_{2}\right)$ given by $y=3 x+4$. Then, the lines $\left(l_{1}\right)$ and $\left(l_{2}\right)$ are parallel if

1. $m=2$.
2. $m=-5$.
3. $m=1$.
4. m does not exist.
5. None of the above.

Exercise 15:

Let $m \in \mathbb{R}$. We consider the line $\left(l_{1}\right)$ given by $y=(2 m-5) x+6$ and the line $\left(l_{2}\right)$ given by $y=2 x-4$. Then, the lines $\left(l_{1}\right)$ and $\left(l_{2}\right)$ are perpendicular if

1. $m=\frac{9}{4} \cdot \sqrt{ }$
2. $m=-\frac{9}{4}$.
3. $m=\frac{9}{2}$.
4. $m=-\frac{9}{2}$.
5. None of the above.

Exercise 16:

Let $a \in \mathbb{R}$ and let f be the function given by $f(x)=x^{2}-1$. The point $A(1, a)$ belongs to the curve of the function f if

1. $a=\sqrt{2}$.
2. $a=-\sqrt{2}$.
3. a does not exist.
4. $a=0 . \sqrt{ }$
5. None of the above.

Exercise 17:

The system

$$
\left\{\begin{array}{l}
2 x+y=7, \\
x-2 y=6
\end{array}\right.
$$

has

1. One solution. $\sqrt{ }$
2. The system has no solution.
3. Two solutions.
4. Infinite number of solutions.
5. None of the above.

Exercise 18:

If $p(x)=2 x^{3}+3 x+4, q(x)=3 x^{2}-2 x+1$, and $r(x)=2 x^{2}-x+1$, then $2 p(x)-q(x) \times r(x)$ is equal to

1. $-6 x^{4}+11 x^{3}-7 x^{2}+9 x+5$.
2. $-6 x^{4}+11 x^{3}-7 x^{2}+10 x+7$.
3. $-6 x^{4}+11 x^{3}-6 x^{2}+9 x+7$.
4. $-6 x^{4}+11 x^{3}-7 x^{2}+9 x+7 . \sqrt{ }$
5. None of the above.

Exercise 19:

By factoring $x^{3}+3 x^{2}-4 x-12$ we get

1. $x^{3}+3 x^{2}-4 x-12=(x+3)(x+2)^{2}$.
2. $x^{3}+3 x^{2}-4 x-12=(x+3)(x+2)(x-2)$.
3. $x^{3}+3 x^{2}-4 x-12=(x+3)(x-2)^{2}$.
4. $x^{3}+3 x^{2}-4 x-12=(x-3)(x+2)(x-2)$.
5. None of the above.

Exercise 20:

The solution set S of the equation $x^{3}+3 x^{2}-4 x-12=0$ is given by

1. $S=\{-3,-2\}$.
2. $S=\{-3,-2,2\}$.
3. $S=\{-3,2\}$.
4. The equation has no solution.
5. None of the above.

Exercise 21:

The domain of definition of the function $f(x)=\frac{1}{x-2}$ is given by

1. $D=]-\infty,+\infty[$.
2. $D=]-\infty, 2[\cup] 2,+\infty[$.
3. $D=]-\infty,-2[\cup]-2,+\infty[$.
4. $D=] 2,+\infty[$.
5. None of the above.

Exercise 22:

If $p(x)=\frac{2 x+1}{x+1}$ and $q(x)=\frac{x-5}{3 x+7}$, then $p(x) \times q(x)$ is equal to

1. None of the below.
2. $p(x) \times q(x)=\frac{-2 x^{2}+9 x-5}{3 x^{2}+10 x-7}$.
3. $p(x) \times q(x)=\frac{2 x^{2}-9 x+5}{3 x^{2}+10 x+7}$.
4. $p(x) \times q(x)=p(x) \times q(x)=\frac{2 x^{2}+9 x+5}{3 x^{2}+10 x+7}$.
5. $p(x) \times q(x)=\frac{2 x^{2}-9 x-5}{3 x^{2}+10 x+7}$.

Exercise 23:

The set of solution S of the equation

$$
\frac{2}{x+2}+\frac{4}{x-2}=\frac{x-1}{x^{2}-4}
$$

is given by

1. $S=\{-1\}$.
2. $S=\{2\}$.
3. $S=\{-2\}$.
4. $S=\{-2,-1,2\}$.
5. None of the above.

Exercise 24:

Using the Long or Euclidean division, $x^{2}-9 \div x-2$ is equal to

1. $x+2-\frac{5}{x-2}$.
2. $x-2+\frac{5}{x-2}$.
3. $-x-2-\frac{5}{x-2}$.
4. $x+2+\frac{5}{x-2}$.
5. None of the above.

Exercise 25:

The domain of definition D of the function $f(x)=\sqrt{2 x+7}+x$ is given by

1. $D=\left[-\frac{7}{2},+\infty[\right.$.
2. $D=\mathbb{R}$.
3. $D=]-\frac{7}{2},+\infty[$.
4. $D=\mathbb{R}-\left\{-\frac{7}{2}\right\}$.
5. None of the above.

Exercise 26:

By simplifying, $4 \sqrt[3]{3}-\sqrt{5}+2 \sqrt[3]{3}+4 \sqrt{5}$ is equal to

1. $6 \sqrt[3]{3}+3 \sqrt{5}$.
2. $6 \sqrt[3]{3}-3 \sqrt{5}$.
3. $-6 \sqrt[3]{3}-3 \sqrt{5}$.
4. $-6 \sqrt[3]{3}+3 \sqrt{5}$.
5. None of the above.

Exercise 27:

The set of solution S of the equation $\sqrt{2 x+7}=x+2$ is given by

1. $S=\{1\}$.
2. $S=\{-3\}$.
3. $S=\{-3,1\}$.
4. The equation has no solution.
5. None of the above.

Exercise 28:

By rationalizing the function $f(x)=\frac{x+1}{\sqrt{x}-2}$ we obtain

1. $f(x)=\frac{(x+1)(\sqrt{x}+2)}{x-4}$. $\sqrt{ }$
2. $f(x)=\frac{(x+1)(\sqrt{x}+2)}{x+4}$.
3. $f(x)=\frac{(x-1)(\sqrt{x}+2)}{x-4}$.
4. $f(x)=-\frac{(x+1)(\sqrt{x}+2)}{x-4}$.
5. None of the above.

Exercise 29:

The set of the real roots S of the polynomial $2 x^{2}+5 x-3$ is given by

1. $S=\left\{-3, \frac{1}{2}\right\}$.
2. $S=\left\{\frac{1}{2}\right\}$.
3. $S=\{-3\}$.
4. The polynomial doesn't have real solutions.
5. None of the above.

Exercise 30:

Using the table of sign, the function $f(x)=x(x-1)$ is strictly negative if

1. $x \in] 0,1[$.

2. $x \in] 1,+\infty[$.
3. $x \in]-\infty, 1[$.
4. It is always positive on \mathbb{R}.
5. None of the above.
